1 процессор 80486 шина адреса бит

Intel 80486

>
Центральный процессор

Микропроцессор Intel 80486
Производство: с 10 апреля 1989 по сентябрь 2007 [1] [2]
Частота ЦП: 16—150 МГц
Частота FSB: 16—50 МГц
Технология производства:
600—1000 нм
Наборы инструкций: x86
Разъём: PGA168, PGA169, PQFP132, PQFP208

Intel486 (также известный как i486, Intel 80486 или просто 486-ой) — 32-битный скалярный x86-совместимый процессор четвёртого поколения, построенный на гибридном CISC-RISC ядре, и выпущенный фирмой Intel 10 апреля 1989 года. Этот микропроцессор является усовершенствованной версией процессора Intel 80386. Впервые он был продемонстрирован на выставке Comdex Fall, осенью 1989 года. Это был первый микропроцессор со встроенным математическим сопроцессором (FPU). Применялся, преимущественно, в настольных ПК, в высокопроизводительных рабочих станциях, в серверах и портативных ПК (ноутбуки и лаптопы).

К тому времени Intel уже лишилась прав собственности на товарные знаки x86, и теперь подобные наименования использовали множество производителей. Основной лозунг конкурентов Intel тогда — «Практически то же что и у Intel, только за меньшие деньги». Тогда-то и обострилась конкурентная борьба между производителями процессоров x86.

Руководителем проекта по разработке микропроцессора Intel486 был Патрик Гелсингер (Patrick Gelsinger).

В мае 2006 года Intel заявила, что производство чипов 80486 прекратится в конце сентября 2007 года. И хотя для прикладных программ на персональных компьютерах этот чип уже долгое время являлся устаревшим, Intel продолжала производить его для использования во встраиваемых системах.

Содержание

Описание

Процессор базируется на той же архитектуре, что применялась, однако в нём имелось несколько значимых усовершенствований. Основные из которых:

Процессор обладал 32-битными шинами адреса и данных. Это требовало наличия памяти в виде четырёх 30-контактных или одного 72-контактного модуля SIMM.

Intel486 имел расположенную на кристалле кеш-память объёмом 8 Кбайт, позднее — 16 Кбайт, работающую на частоте ядра. Наличие кеша позволило существенно увеличить скорость выполнения операций микропроцессором. Изначально кеш Intel486 работал по принципу сквозной записи (англ. write-through, WT ), но позже, в рамках семейства Intel486, были выпущены модели с внутренним кешем, работающим по принципу обратной записи (англ. write-back, WB ). Процессор мог использовать и внешний кеш, скорость чтения-записи которого, однако, была заметно ниже чем у внутреннего кеша. При этом внутренний кеш стали называть кешем первого уровня (Level 1 Cache), а внешний кеш, расположенный на материнской плате, кешем второго уровня (Level 2 Cache). Кеш имел 4-канальную наборно-ассоциативную архитектуру и работал на уровне физических адресов памяти.

Однако, в результате использования интегрированной кеш-памяти, существенно возросло количество транзисторов в процессоре и, как следствие, увеличилась площадь кристалла. Увеличение количества транзисторов привело к существенному увеличению рассеиваемой мощности. В среднем, рассеиваемая мощность увеличилась в 2 раза, по сравнению с аналогичными моделями серии Intel386. Во многом этому способствовала интеграция кеш-памяти, хотя были и другие факторы, но они не столь существенны. По этой причине процессоры Intel486 старших моделей уже требовали принудительного (активного) охлаждения.

Математический сопроцессор

В Intel486 был использован встроенный математический сопроцессор (англ. Floating Point Unit, FPU ). Вообще, это был первый микропроцессор семейства x86 со встроенным FPU. Встроенный FPU был программно совместим с микросхемой Intel 80387 — математическим сопроцессором, применявшимся в системах с процессором Intel386. Благодаря использованию встроенного сопроцессора удешевлялась и ускорялась система за счёт уменьшения общего числа контактов и корпусов микросхем.

Изначально все выпускавшиеся микропроцессоры Intel486 оснащались работающим сопроцессором, эти процессоры получили имя Intel486DX. Позже, в 1991 году, Intel решает выпустить процессоры с отключённым сопроцессором, и эти процессоры получили наименование Intel486SX. Системы построенные на этих процессорах могли оснащаться отдельным сопроцессором, например, Intel487SX или сопроцессором других производителей.

Конвейерная обработка инструкций

В Intel486 был усовершенствован механизм выполнения инструкций в несколько этапов. Конвейер процессоров серии Intel486 состоял из 5 ступеней: выборка инструкции, декодирование инструкции, декодирование адресов операндов инструкции, выполнение команды, запись результата выполнения инструкции. Использование конвейера позволило во время выполнения одной инструкции производить подготовительные операции над другой инструкцией. Это в значительной степени позволило увеличить производительность процессора.

Регистры и инструкции

В процессоре имеется тот же набор инструкции что и в Intel386, к которому было добавлено несколько дополнительных регистров, а именно, три 32-битных тестовых регистра (TR5, TR4, TR3). Также были добавлены новые флаги в регистре флагов (EFLAGS) и в других управляющих регистрах (CR0, CR3).

Вследствие включения сопроцессора в кристалл процессора, в Intel 486 можно обращаться и к регистрам FPU: регистры данных, регистр тегов, регистр состояния, указатели команд и данных FPU, регистр управления FPU.

Набор инструкций не претерпел существенных изменений, но были добавлены дополнительные инструкции для работы с внутренней кеш-памятью (INVD, INVLPG, WBINVD), одна инструкция (BSWAP) для обеспечения совместимости с процессорами Motorola, две инструкции для атомарных операций с памятью: CMPXCHG (для сравнения с обменом — новое значение записывалось только если старое совпадало с заданным, старое запоминалось) и XADD (инструкция для сложения двух операндов с помещением результата во второй операнд, а не в первый, как в ADD). Инструкция CPUID позволяла впервые в семействе x86 напрямую получить детальную информацию о версии и свойствах процессора. Помимо этого, к набору инструкций добавилось 75 инструкций FPU.

Читайте также:  Ваз 2109 инжектор выставить метки грм фото

Длина очереди инструкций была увеличена до 32 байт.

Модели

С момента появления первого процессора Intel486DX было выпущено множество других моделей семейства 486 с суффиксами SX, SL, DX2, DX4, GX. Они отличались функциональным предназначением и некоторыми технологическими параметрами (напряжение питания, тактовая частота, размер кеш-памяти, отсутствием или наличием сопроцессора и др.), но все были построены на одной архитектуре.

Процессоры Intel486

Модель Кодовое имя Дата анонса Описание
Intel486DX P4 10 апреля 1989 Оригинальный процессор семейства i486
Intel486SX P23 16 сентября 1991 Подобен i486DX, но с отключённым математическим сопроцессором
Intel487SX P23N 16 сентября 1991 i486DX со слегка изменённой распиновкой для использования в i486SX системах как FPU.
Intel486DX2 P24 3 марта 1992 Имеет удвоенную тактовую частоту по отношению к внешней шине
Intel486 OverDrive P23T 26 мая 1992 Предназначен для модернизации компьютеров с процессорами i486DX/SX
Intel486SL . 9 октября 1992 i486SX низкого энергопотребления, применялся главным образом в портативных компьютерах
Intel486DX SL-enhanced P4S 21 июня 1993 i486DX с SL-технологией
Intel486SX SL-enhanced P23S 21 июня 1993 i486SX с SL-технологией
Intel486DX2 SL-enhanced P24S 21 июня 1993 i486DX2 с SL-технологией
Intel486SX2 . 1994 Подобен i486DX2, но с отключённым математическим сопроцессором
Intel486DX4 P4C 7 марта 1994 Имеет утроенную тактовую частоту по отношению к внешней шине
Intel486DX2wb P24D октябрь 1994 i486DX2 с кеш-памятью типа write-back
Intel486DX4 OverDrive PR P4T октябрь 1994 Предназначен для модернизации компьютеров с процессорами i486DX/SX
Intel486GX . 25 марта 1996 i486SX для использования в портативных устройствах

Процессоры с индексом DX2 имели коэффициент умножения 2 — то есть, например, при частоте системной шины 33 МГц рабочая частота самого процессора составляла 66 МГц. Позже появились процессоры с индексом DX4 — однако коэффициент умножения у них был не 4, а 3. Уже после ухода с массового рынка 486-процессоров производства Intel компания AMD выпустила процессоры 486DX4-120 и Am5x86-133 (последний использовался преимущественно в портативных системах). В результате введения множителей в широкий обиход впервые вошло такое понятие, как разгон (англ. overclocking ) — повышение производительности процессора путем увеличения тактовой частоты шины или коэффициента умножения. Так, известно, что в России даже в открытую продажу поступали системы, в которых процессоры i486 работали на частотах до 160 МГц.

Источник

Защищенный режим процессоров Intel 80286/80386/80486

1.1. Адресация памяти в реальном режиме

В любом случае так называемый физический адрес передаётся из процессора в память по шине адреса. Ширина шины адреса определяет максимальный объём физической памяти, непосредственно адресуемой процессором. На рис. 1 показана схема взаимодействия процессора и памяти через шины адреса и данных.

Рис. 1. Шина адреса и шина данных

Например, компьютер IBM XT оснащён 20-разрядной шиной адреса и 16-разрядной шиной данных. Это означает, что имеется возможность адресоваться к 216 байтам памяти, т.е. к 1 мегабайту памяти. Причём возможно адресоваться к байтам и словам размером в 16 бит.

Так как адреса принято записывать в шестнадцатеричной форме, то мы можем записать диапазон физических адресов для 20-разрядной шины адреса следующим образом:

Таким образом, для представления физического адреса в компьютерах IBM PC и IBM XT используется двадцать двоичных или пять шестнадцатеричных разрядов.

Однако все регистры процессора i8086 являются 16-разрядными. Возникает проблема представления 20-разрядного физического адреса памяти при помощи содержимого 16-разрядных регистров.

Для разрешения этой проблемы используется двухкомпонентный логический адрес.

Логический адрес состоит из 16-разрядных компонент: компоненты сегмента памяти и компоненты смещения внутри сегмента.

Для получения 20-разрядного физического адреса к сегментной компоненте приписывается справа четыре нулевых бита (для расширения до 20 разрядов), затем полученное число складывается с компонентой смещения. Перед сложением к компоненте смещения слева дописывается четыре нулевых бита (также для расширения до 20 разрядов). Эту процедуру иллюстрирует рис. 2.

Рис. 2. Адресация памяти в реальном режиме.

Очевидно, что одному физическому адресу может соответствовать несколько логических. Например, физическому адресу 12453h соответствует логический адрес 1245h:0003h.

Фактически в схеме адресации памяти реального режима вся память как бы разбивается на сегменты. Физический адрес начала сегмента (базовый адрес сегмента) равен расширенной до 20 бит сегментной компоненте адреса (расширение выполняется дописыванием справа 4 нулевых бит).

Сегменты могут начинаться не с любого физического адреса, а только с такого, который кратен 16 байтам. Поэтому сегмент может начинаться только с границы параграфа.

Компонента смещения при такой схеме адресации является смещением внутри сегмента памяти. А сам сегмент памяти задаётся сегментной компонентой.

Рис.3 иллюстрирует сказанное выше. На этом рисунке показано соответствие логического адреса 0002h:0028h физическому адресу 00048h.

Рис. 3. Соответствие логического и физического адресов.

Логический адрес должен находиться в следующих пределах:

Здесь есть одна тонкость. Логический адрес FFFFh:000Fh соответствует максимально возможному физическому адресу FFFFFh. Но используя 16-разрядные регистры процессора вы можете задать и большее значение для логического адреса, например, FFFFh:0010h. Что произойдёт в этом случае?

Читайте также:  Автошколы с автомобилями с акпп

Если в компьютере установлены процессоры i8086 или i8088, произойдёт переполнение адреса, которое будет проигнорировано процессором. В результате логическому адресу FFFFh:0010h будет соответствовать физический адрес 00000h.

Однако есть возможность снять блокировку с адресной линии A20. При этом в реальном режиме появляется ещё один «льготный» сегмент памяти, лежащий выше границы первого мегабайта. Этот сегмент называется областью старшей памяти (High Memory Area). Ему соответствует диапазон логических адресов от FFFFh:0010h до FFFFh:FFFFh. Размер области старшей памяти составляет 64 килобайта без 16 байт.

Операционная система MS-DOS умеет использовать старшую область памяти, располагая там своё ядро. Для этого необходимо подключить драйвер HIMEM.SYS и поместить в файл CONFIG.SYS строку:

Архитектура процессоров серии i80XXX, работающих в реальном режиме, предполагает хранение сегментной компоненты адреса в специальных сегментных регистрах:

Компонента смещения может находиться в регистрах BX, BP, SI, DI, IP.

Задавая произвольные значения сегментной компоненты и компоненты смещения любая программа может адресоваться к любому участку памяти компьютера. В частности, любая программа может преднамеренно или из-за ошибки разрушить области данных, принадлежащие операционной системе.

Этих недостатков полностью лишена схема адресации памяти, которая используется в защищённом режиме.

Источник

История процессоров Intel. 386: первый 32-разрядный

В 1982 году компания Intel представила микропроцессор 80286, который стал первым чипом семейства x86, получившим полностью раздельные шины адреса и данных, а также защищённый режим и встроенные возможности управления памятью. Таким образом, благодаря этому процессору IBM-совместимые системы впервые получили возможность запуска сложных операционных систем с поддержкой многозадачности и защиты памяти.

Однако у 80286 было несколько проблем. Во-первых, единственным способом переключиться из защищённого режима обратно в реальный режим была перезагрузка компьютера. Во-вторых, DOS-программы могли выполняться в защищённом режиме только при выполнении большого количества условий, которые в реальных приложениях нарушались почти всегда. И если изначально предполагалось, что операционные системы OS/2 (совместная разработка IBM и Microsoft) и FlexOS 286 (разработанная компанией Digital Research) смогут одновременно запускать несколько DOS-приложений, то описанные выше ограничения поставили на этих планах крест. То же самое относилось и к Windows. Именно поэтому Билл Гейтс в своё время назвал 80286 «безмозглым процессором».

В 1985 году Intel представила процессор 80386, который стал первым 32-битным процессором семейства x86. Помимо расширения разрядности, в 80386 появился страничный доступ к памяти (что сделало возможным реализацию операционных систем с поддержкой виртуальной памяти). В защищённом режиме процессор эмулирует плоскую модель доступа к памяти, за счёт чего для приложений вся память (как физическая, так виртуальная) выглядит как единое адресное пространство. Ещё одним нововведением 80386 стал режим виртуального 8086 — по сути, один из ранних вариантов аппаратной виртуализации. В этом режиме эмуляция процессора 8086 работает как задача в защищённом режиме. Соответственно, пользователь может запускать программы, предназначенные для реального режима, параллельно с приложениями, работающими в защищённом режиме. Именно этот факт позволил Microsoft реализовать многозадачность для DOS-приложений в оболочке Windows 3.x и операционных системах Windows 95/98/ME.

Первые версии 80386 содержали 275000 транзисторов, то есть были практически на порядок более сложными, чем 8086. Планировалось, что изначально тактовая частота процессора составит минимум 16 МГц, однако из-за сложности чипа выход годных экземпляров, способных работать на такой частоте, был невысоким, поэтому нижний порог был снижен до 12 МГц. Впоследствии были выпущены процессоры 80386 с тактовой частотой 16, 20, 25 и 33 МГц.

Выход на рынок

Несмотря на передовые технические характеристики, процессор 80386 был прохладно воспринят IBM, которая на тот момент оставалась лидером рынка ПК. Компьютер с 32-разрядным процессором, способный адресовать до 4 ГБ оперативной памяти и запускать сразу много приложений в многозадачном режиме, был слишком похож на гораздо более дорогие мейнфреймы и миникомпьютеры IBM. Именно поэтому компания решила попросту игнорировать новинку и ограничиться процессором 286 для своих PC.

Но, как это часто бывает, природа не терпит пустоты, поэтому жёлтую майку лидера-инноватора решила примерить молодая и амбициозная компания Compaq. Выпущенный в октябре 1985 года Compaq Desqpro 386 стал самым быстрым персональным компьютером в мире на тот момент, хитом продаж и любимцем всех обозревателей. И хотя для массового пользователя эпоха 32-битных вычислений не наступила вплоть до выхода Windows 95, требовательные приложения (особенно игры) очень быстро начали использовать усовершенствованный защищённый режим процессора. Появился даже целый класс системных утилит — «расширителей DOS» (DOS Extenders), которые позволяли создавать DOS-приложения, работающие в защищённом режиме. Самым популярным из них был DOS/4G (позже переименованный в DOS/4GW), использовавшийся большинством компьютерных игр.

Интересный факт: с выходом 80386 компания Intel решила отказаться от практики лицензирования своих процессоров сторонним производителям. Вместо этого производство 80386 было запущено одновременно на трёх фабриках, а Энди Гроув, который к тому моменту уже стал главным исполнительным директором Intel, сумел убедить покупателей, что этого достаточно для обеспечения бесперебойных поставок процессора. В результате Intel в одночасье превратилась из «одного из многих поставщиков процессоров» в ключевого игрока PC-индустрии. Одновременно с этим компания приняла решение отказаться от производства памяти и полностью переориентироваться на производство процессоров. Как показала практика, это было очень мудрое решение, поскольку во второй половине 1980-х выход на этот рынок японских полупроводниковых компаний и кризис перепроизводства привели к резкому падению цен на микросхемы памяти и финансовым проблемам производителей памяти.

Читайте также:  Глохнет на любой передаче акпп

Чип-долгожитель

У процессора 80386 была долгая и счастливая жизнь. В 1988 году была выпущена его удешевлённая версия 80386SX, которая отличалась от DX-версии разрядностью шины данных (16 бит против 32). Подобное упрощение позволило использовать с 80386SX наборы системной логики для процессора 80286, что было актуально для недорогих систем. Даже после выхода процессора 80486 (P4) топовые варианты 80386 (с тактовой частотой 33 МГц) часто использовались энтузиастами как более дешёвое и проверенное временем решение.

В середине девяностых 80386 был окончательно вытеснен из компьютеров более производительными чипами. Однако в качестве процессора для встроенных решений он выпускался вплоть до 2007 года и даже успел стать основой некоторых смартфонов, включая Blackberry 950 и Nokia 9000 Communicator.

Nokia 9000 Communicator на базе процессора Intel 80386EX

80386 интересен ещё и тем, что после него базовый набор команд процессоров Intel оставался практически неизменным в течение 18 лет — вплоть до появления 64-битных расширений для x86 в 2003 году.

Викторина «50 лет закону Мура»

В этот раз мы предлагаем вам совершенно необычный конкурс, напоминающий закон Мура в действии. В течение двух недель мы проведем 5 викторин. По одной каждые три дня. И с каждым новым конкурсом количество разыгрываемых призов будет. удваиваться!

Среди всех, кто правильно ответит на все вопросы этой викторины мы разыграем сразу четыре памятных сувенира от компании Intel: портмоне. Этот тур конкурса проводится с 20 по 22 апреля (включительно). Победитель будет выбран в результате жеребьевки. Его имя и правильные ответы викторины будут опубликованы не позднее 26 апреля. В конкурсе, традиционно, могут участвовать только жители Украины. И не могут — сотрудники компании Magnet и их родственники.

Источник

Intel 80486

Intel 80486 (также известный как i486, Intel 486 или просто 486-й) — 32-битный скалярный x86-совместимый микропроцессор четвёртого поколения, построенный на гибридном CISC-RISC-ядре и выпущенный фирмой Intel 10 апреля 1989 года. Этот микропроцессор является усовершенствованной версией микропроцессора 80386. Впервые он был продемонстрирован на выставке Comdex Fall, осенью 1989 года. Это был первый микропроцессор со встроенным математическим сопроцессором (FPU). Применялся преимущественно в настольных ПК, в высокопроизводительных рабочих станциях, в серверах и портативных ПК (ноутбуки и лэптопы).

Руководителем проекта по разработке микропроцессора Intel 486 был Патрик Гелсинджер.

Содержание

Описание [ | ]

Технические характеристики (сводно) [ | ]

Процессор обладал 32-битными шинами адреса и данных. Это требовало наличия памяти в виде четырёх 30-контактных или одного 72-контактного модуля SIMM.

Различия между Intel 486DX и Intel 386 [5] [ | ]

Intel 486DX, 486DX2 и 486DX4 представляют собой кристалл, содержащий центральный процессор, математический сопроцессор и контроллер кэша. Полностью совместимые на уровне предпроцессора с процессорами Intel 386, тем не менее, они имеют следующие отличия:

Микроархитектура [ | ]

Микроархитектура Ultra Low Power i486SX и i486GX

Математическая модель и набор инструкций [ | ]

Набор инструкций не претерпел существенных изменений, но были добавлены дополнительные инструкции для работы со внутренней кэш-памятью (INVD, INVLPG, WBINVD), одна инструкция (BSWAP) для обеспечения совместимости с процессорами Motorola, две инструкции для атомарных операций с памятью: CMPXCHG (для сравнения с обменом — новое значение записывалось только если старое совпадало с заданным, старое запоминалось) и XADD (инструкция для сложения двух операндов с помещением результата во второй операнд, а не в первый, как в ADD). Инструкция CPUID позволяла впервые в семействе x86 напрямую получить детальную информацию о версии и свойствах процессора. Помимо этого, к набору инструкций добавилось 75 инструкций FPU.

Длина очереди инструкций была увеличена до 32 байт.

Блоки и реализация интерфейсов [ | ]

Организация интерфейса с устройствами ввода-вывода

Организация интерфейса с 32-битными устройствами ввода-вывода

Организация интерфейса с переменным размером шины данных: 16 бит

Организация интерфейса с 8-битными устройствами ввода-вывода

Регистры [ | ]

В процессоре имеется расширенный, по сравнению с в 80386, набор инструкций, в который добавлено несколько дополнительных регистров, а именно, три 32-битных тестовых регистра (TR5, TR4, TR3). Также были добавлены новые флаги в регистре флагов (EFLAGS) и в других управляющих регистрах (CR0, CR3).

Вследствие включения сопроцессора в кристалл процессора, в Intel 486 можно обращаться и к регистрам FPU: регистры данных, регистр тегов, регистр состояния, указатели команд и данных FPU, регистр управления FPU.

Конвейерная обработка инструкций [ | ]

В Intel 486 был усовершенствован механизм выполнения инструкций в несколько этапов. Конвейер процессоров серии Intel 486 состоял из 5 ступеней: выборка инструкции, деирование инструкции, деирование адресов операндов инструкции, выполнение команды, запись результата выполнения инструкции. Использование конвейера позволило во время выполнения одной инструкции производить подготовительные операции над другой инструкцией. Это в значительной степени позволило увеличить производительность процессора.

Источник

То, что вы хотели знать
Intel 80486
Центральный процессор

Микропроцессор Intel 80486
Производство с 10 апреля 1989 по сентябрь 2007 [1] [2]
Разработчик Intel
Производители